
Comparison of the Effectiveness of Simple Agent
Capabilities for an On-line Area Coverage Task

David Buckingham
Department of Computer Science

Tufts University
Medford, MA 02155, USA

dbucki01@tufts.edu

Giordano Ferreira
Department of Computer Science

Tufts University
Medford, MA 02155, USA

giordano.ferreira@tufts.edu

Alexander Bock
Department of Computer Science

Tufts University
Medford, MA 02155, USA

alexander.bock@tufts.edu

Matthias Scheutz
Department of Computer Science

Tufts University
Medford, MA 02155, USA

matthias.scheutz@tufts.edu

Abstract—We present the results of a suite of experiments
conducted with a 2D simulation of a multi-agent area coverage
problem. Agents perform a basic behavior of moving in a straight
line and responding to collisions by setting a new random
heading. Agents are optionally equipped with a subset of three
additional capacities: a timer that causes the agent to alter
its heading at regular intervals, a surface sensor that detects
areas that have not yet been covered, and an agent sensor
that detects the proximity of other agents. Our experimental
conditions included all combinations of these features and also
varied the task environment and the number of agents deployed.
We found that the usefulness of feature configurations depends
upon the task environment, number of agents deployed, and the
metric used to determine performance. The surface sensor feature
became more useful as the number of agents increased, while the
agent proximity sensor became less useful. The surface sensor was
generally useful early in the simulation, but became a hindrance
once the task was nearly complete. With one performance
metric, each of the three features alone was detrimental, while
a configuration combining them together was beneficial.

Index Terms—simple agents, area coverage, multi-agent system

I. INTRODUCTION

The area coverage problem requires one or more agents to

move around a task environment in order to pass an effector

over all points within that environment. As an agent moves, its

effector causes previously uncovered area to become covered

area. Domains such as search and rescue tasks, autonomous

painting, and military applications may benefit from using

approaches to the area coverage problem that use groups of

robots with minimal sensory and computational capabilities.

Despite their limitations with respect to more powerful and

complex robots, the potential advantages of such simple robots

include small size, low cost, disposability, increased system

robustness, and simplified logistics. According to the definition

proposed by Wagner et al. [23], a simple robot 1) has memory

capacity that is independent of the problem size or the number

of robots; 2) can sense only a small part of the environment; 3)

has limited computational resources; and 4) rarely uses explicit

communication.

Area coverage problems are relevant for a large set of real

world domains such as floor cleaning [16], [21], industrial

panting [2], [6], agriculture [11], [15] and demining [1],

[18]. Such tasks can be approached using diverse algorithms

depending on the types of agents and the information avail-

able, including path-planning algorithms when a priori task

information is complete. Randomized approaches have been

successfully employed in several commercial floor cleaning

robots, even though they do not guarantee completion [16].

Galceran and Carreras argue that randomized approaches may

not effectively scale for vast areas because of redundant explo-

ration [9]. Yet, randomized approaches have the advantage that

they require few or no sensors for localization, and they can be

implemented in robots with limited computational resources.

Therefore, we argue that randomized control strategies may

be appropriate for simple robots. Even though randomized

approaches do not guarantee complete coverage, a group of

simple agents may perform sufficiently well to satisfy some

reasonable performance constraints.

Choset [7] proposes a taxonomy for area coverage algo-

rithms. The first distinction is between heuristic and complete

algorithms based on whether they guarantee completion given

some constraints. A second distinction is between on-line

and off-line methods. Off-line methods rely on complete

information about the target area. While off-line approaches

may be feasible in some circumstances, complete a priori

knowledge may not always be available. In these cases,

robots must use their sensors to acquire information about the

environment. Although some on-line methods are complete,

none are optimal for all environments.

Another important characteristic is the number of agents

working on the task. While increasing the number of agents

can reduce the total time to complete the task by reducing the

amount of work for each agent, Rekletis et al. [19] emphasize

that this performance gain occurs only if the workload can be

2011978-1-5386-9276-9/18/$31.00 c©2018 IEEE

effectively divided to minimize areas covered multiple times.

We present a novel systematic comparison of all combina-

tions of several possible simple agent features. Our previous

work with the area coverage problem [5] did not qualitatively

vary agent capacities: agents were equipped with the equiv-

alent of this work’s timer feature, but lacked sensors. Our

current simulation further improves upon our previous work

by including inter-agent collision detection.

Our simulation is a spatially continuous 2D implementation

of the area coverage problem. A group of 10, 20, or 40

agents deployed in the simulation share the same features

and abilities. Agents have no prior knowledge of the task

environment: the layout of the target area can affect their

behavior only by means of sensors and on-line interactions.

Thus, according to Choset’s taxonomy, our method is a ran-

domized, on-line, homogeneous multi-agent approach to the

area coverage problem.

Some approaches to the area coverage task in multi-agent

systems consist of agents working as a team, communicating

often to decide the next action for each robot. Hence, direct

communication has an important role in the task performance

of the group [8]. In other approaches, each robot uses in-

formation left in the environment by other agents (indirect

communication). In our simulation, each robot autonomously

decides its next action, i.e. there is no group decision.

Many real-world robotics tasks must contend with uncer-

tainty, e.g. caused by errors in path tracking, noisy sensor

data, or motor imprecision. Paull et al. [17] offer an approach

to area coverage that accounts for uncertainty by modeling

coverage probabilistically. Their method guarantees complete

coverage without assuming bounded state error. Because of our

focus on agents with limited computational resources, we do

not simulate uncertainty. However, future work could explore

how uncertainty influences the area coverage performance of

simple agents.

One advantage of using multiple robots is increased ro-

bustness of the system. This was the focus of the algorithm

proposed by Hazon, Mieli and Kaminka [10]. The authors

present a complete multi-agent algorithm for the on-line area

coverage task. They prove that the algorithm is robust against

the failure of individual robots, and guarantees completeness

as long as one robot is still functioning. However, their

approach relies upon agents using sensors to create an internal

representation of the task environment, making it unsuitable

for simple agents.

Our agents perform a basic move forward behavior: they

move in a straight line and respond to collisions by randomly

setting a new heading. Agents were also optionally equipped

with a subset of three additional features. 1) A timer causes

an agent to set its course at regular time intervals. 2) A

surface sensor allows an agent to detect and move towards

nearby areas that have not yet been covered. 3) A proximity
sensor allows an agent to detect and move away from other

nearby agents. We selected these agent features because they

correspond to capacities available to many simple robots.

The r-one robot [13], for example, has an onboard clock, an

omnidirectional bump sensor to respond to collisions, and an

infrared obstacle detector that might be used to detect other

robots. A camera could detect surface area that has not yet

been altered by an effector (e.g. unpainted surface). The e-

puck robot [4] has similar capabilities.

We present our agent-based simulation of the area coverage

task in Section II. Then, in Section III, we present the experi-

ments we performed to compare the combinations of features

for two distinct environments and various numbers of agents.

In Section IV, we present the results of our experiments and

examine how each feature combination affects performance.

We discuss the significance of our results in Section V, and

conclude the paper with Section VI by reviewing our findings

and proposing directions for future work.

II. AREA COVERAGE SIMULATION

Each circular agent in our simulation has three degrees of

freedom: two translation components and one component of

orientation. As an agent moves, its circular effector remains

centered over the center of the agent, causing any uncovered

area under the effector to become covered area. Although agent

movement is computed in discrete timesteps, the Minkowski

sum of the effector across sequential timesteps becomes cov-

ered area, simulating the continuous movement of the effector

between its positions at sequential timesteps.

We use the radius of an agent’s body, r, as the fundamental

metric of distance for our simulation. This corresponds to

35mm for an e-puck robot. Tab. I specifies several measure-

ments in terms of r.

TABLE I: Simulation parameters in terms of agent body radius

Agent radius 1 · r
Effector radius 1.414 · r
Surface sensor range 4 · r
Proximity sensor range 10 · r
Agent speed 0.3 · r
Simple arena area 100 · r2

A. “basic” configuration

At each timestep t an agent has a position, 〈xt, yt〉, and

a heading, which can be described as an angle θt or as a

unit vector (hxthyt), where hxt = arccos(θt) and hyt =
arcsin(θt). At each timestep, an agent’s position is updated

according to its heading such that xt+1 = xt + (hxt · s) and

yt+1 = yt + (hyt · s), where s is the agent speed.

When such movement results in a collision, causing the

agent’s body to overlap with a wall or another agent, the

collision detection and resolution algorithms of the Chip-
munk2D [22] physics library moves the agent away from the

overlapping region until there is no overlap. At the start of the

simulation and after each collision an agent’s heading is set to

a new direction drawn uniformly from {0, 2π}. Thus, in the

basic configuration, agents move in straight lines in random

directions and set a new random heading after collisions.

Agents are equipped with one of 8 feature sets, correspond-

ing to the power set of three optional features: timer, surface,

2012 IEEE Symposium Series on Computational Intelligence SSCI 2018

and proximity. When one or more features is present they

augment the basic behavior described above. The collision

response behavior of the basic configuration is preserved in

all configurations.

B. “timer” configuration

Every 50 timesteps the agent sets a new heading drawn

uniformly from [0, 2π). We chose a 50 timestep duration based

on visual observation of the simulation to allow agents to move

a reasonable distance across the environment (15%) before

changing direction.

C. “surface” configuration

In the surface configuration, the agent uses a sensor that

measures covered area to calculate a new heading. Each

timestep (except for immediately after a collision), 16 equally

spaced lines of length 4 ·r are drawn radiating from the center

of the agent (like wheel spokes). For each line, the total length

intersecting non-covered area is calculated. The agent sets a

new heading in the direction of the line that intersects the most

uncovered area. If there is a tie, one of the lines intersecting

the most uncovered area is randomly selected. Thus, if no lines

intersect any covered area, the agent uniformly draws a new

heading from 0, π/8, π/4, . . . , 2π.

D. “proximity” configuration

In the proximity configuration, the agent uses a sensor

that measures the direction of nearby agents to calculate a

new heading. Each timestep (except for immediately after a

collision), if there is at least one other agent within 10 ·r, set a

new heading directly away from the nearest agent. Otherwise,

the heading is not changed.

E. “surfaceProximity” configuration

In the surfaceProximity configuration, each timestep, if there

is at least one other agent within 10r, the heading is updated

as in the proximity configuration. Otherwise, the heading is

updated as in the surface configuration.

F. “timerSurface” configuration

In the timerSurface configuration, the agent uses the covered

area sensor to update its heading as in the surface configura-

tion. However, it does so only every 50 timesteps.

G. “timerProximity” configuration

In the timerProximity configuration, the agent uses the agent

sensor to update its heading as in the proximity configuration.

However, it does so only every 50 timesteps.

H. “timerSurfaceProximity” configuration

In the timerSurfaceProximity configuration, the agent up-

dates its heading as in the surfaceProximity configuration.

However, it does so only every 50 timesteps.

III. EXPERIMENTS

The simulation stores each agent’s coordinates in the en-

vironment. The simulator also stores the ratio of the covered

area to the total environment area. The simulation halts when

either that ratio is 1 (the whole environment is covered) or

100,000 timesteps have elapsed.

We used two environments which have appeared in previous

work using randomized approaches to the area coverage task

[5]. The first environment, called Simple, is an empty square

with edges of length 100r. The second environment called

Walls, was first proposed by Wagner et al. [24]. This more

complex environment requires agents to navigate two distinct

areas, linked only by a tight corridor, which must also be

covered. The outer bounds have length of 100r, the top area

contains 25% of the environment area, the bottom area is 60%
of the entire area, and the corridor plus inner walls contain the

other 15%. Fig. 1 illustrates the two environments.

Note that the area to be covered in the walls environment

is 9.5% smaller than the simple environment. Thus while

agents must contend with the barriers in the walls environment,

the total area to be covered is smaller than in the simple
environment.

The first parameter we varied was the number of robots in

the environment n ∈ {10, 20, 40}. Increasing the number of

robots improves the overall performance of the group. How-

ever, the improvement is dependent on how well the robots can

divide the task. Simple agents do not communicate or maintain

an explicit representation of the environment, making it harder

to cooperate. Thus, we expect the improvement to asymptote

as the number of robots increase, and using a large number of

robots may not be justifiable.

Fig. 1: The Simple and Walls environments.

With three optional features, there were 8 unique feature

combinations. For each experimental condition consisting of

a combination of features, a number of robots in {10, 20, 40},

and one of the two environments, we ran 50 simulations

with randomized starting positions. Thus, there were 2400

experimental runs in total.

To evaluate the performance of the robots, we used two

metrics. The ratio completion metric, R, expresses how many

timesteps it took to cover some ratio of the environment. We

recorded values for 5 ratios: 0.5, 0.9, 0.95, 0.99, and 1. Thus,

R0.5 is the number of timesteps elapsed when first half of the

environment becomes covered, R1 is the how many timesteps

it takes to cover the entire environment, etc.

IEEE Symposium Series on Computational Intelligence SSCI 2018 2013

TABLE II: Number of simulation runs that achieved each

ratio completion metric for experiment conditions that did not

complete the area coverage task for all 50 runs.

Task Configuration # 50% 90% 95% 99% 100%

simple surfaceProximity 10 50 50 50 50 35
simple surfaceProximity 20 50 50 50 50 48
simple surface 10 50 50 50 50 36
simple surface 20 50 50 50 50 43
walls surfaceProximity 10 50 50 49 49 13
walls surfaceProximity 20 50 50 50 50 34
walls surfaceProximity 40 50 50 50 50 44
walls surface 10 50 50 50 49 10
walls surface 20 50 50 50 48 41
walls surface 40 50 50 50 50 46
walls timerSurface 10 50 50 50 50 49
walls timer 10 50 50 50 50 49

For most experimental conditions, the area coverage task

was completed before the 100,000 timestep limit, and all

50 runs were used to calculate each ratio completion metric

median and distribution. For runs that did not complete the

task, R1 is undefined, and some runs didn’t even achieve some

of the lesser ratio thresholds. Tab. II shows, for experimental

conditions that did not completely cover the environment

before reaching the timestep limit in all 50 runs, how many

of the runs reached each ratio threshold, and therefore how

many runs are represented in our result statistics.

The integral metric, I , is the sum of the covered ratio at each

timestep over all 100,000 timesteps. Thus, if r(t) is the ratio

of covered area to total environment area at timestep t, then

I =
∑100000

t=1 r(t). If the simulation ends before the timestep

limit because r(u) = 1 at some timestep u < 100000, then

the remaining timesteps are still included in the metric; that

is, I = 100000− u+
∑u

t=1 r(t).

Note that better performance is indicated by lower values

of the ratio completion metric, but by higher values of the

integral metric.

IV. RESULTS

A. Comparing the number of agents

Fig. 2 shows performance using the integral metric for each

agent configuration and environment, with separate plots for

each number of agents. Dots show mean values across 50

experimental runs and vertical lines show 95% confidence

intervals. We will consider how the relative performance of

each feature combination varies with the number of agents.

With 10 agents, the performance of the surface configu-

ration was similar to that of the basic configuration. With

40 agents, however, surface outperformed basic. With 20

agents, the effect of surface depended on the environment: it

helped in simple and hurt in walls. For all numbers of agents

and environments, surface resulted in broader performance

distributions than basic.

This relationship between number of agents and effect on

performance was roughly reversed for the proximity config-

uration. With 10 agents the performance of the proximity

configuration was similar to basic, but with more agents the

proximity configuration was worse than basic.

With 10 agents, timerSurface was better than just surface,

but with 40 agents surface alone was better than timerSurface.

Overall, the performance distribution were tighter in simple
than in walls: the randomized starting position of the agents

had a greater bearing on performance in walls. If, for example,

all agents start on one side of the barrier, it might take a

long time before any area on the other side of the barrier

becomes covered. For most conditions, this difference was

more pronounced with fewer agents.

B. Comparing performance metrics

Fig. 3 shows performance distributions for each agent con-

figuration and environment, aggregating the different numbers

of agents, and using separate plots for each ratio covered

metric. Thick horizontal lines show median values across

multiple experimental runs (50 runs except for as reported

in Tab. II), colored boxes show one interquartile range (IQR),

whiskers show 1.5 IQR, and dots show results beyond 1.5

IQR.

The surface configuration helped performance slightly for

the R0.5, R0.95, and R0.99 metrics, but harmed performance

for the R1 metric. It increased the speed with which agents

covered new area until after 99% of the arena had been

covered. After that, however, performance was much worse

than with the basic behavior.

For the R1 metric, timer, surface, and surfaceProximity per-

formed worse than the basic behavior. The surface feature hurt

performance in all cases except where it was combined with

both proximity and timer. While the timer feature decreased

performance in isolation, it’s addition to the surface feature,

with or without the proximity feature, helped performance.

For the R0.99 metric, timerSurfaceProximity had lower

medians and tighter distributions than the basic behavior in

both environments. In the simple environment, each feature in

isolation hurt the median performance, increasing the number

of timesteps to cover 99% of the environment, but improved

performance in combination.

V. DISCUSSION

The surface feature improved median performance over

basic in the simple environment only when the number of

agents was at least 20, and in walls only with 40 agents.

This feature provides a degree of indirect coordination between

agents: an agent can detect and avoid areas that have already

been covered by other agents (or by the same agent). As

previously discussed, increasing the number of agents can only

improve performance to the extent that redundancy is avoided

by a division of the task among agents. The improvements

to performance caused by the task-partitioning quality of the

surface feature may therefore increase as the number of agents

(and the amount of redundancy in the basic configuration)

increases.

The proximity feature helped performance with few agents

but hurt performance with many agents. Visual observation of

2014 IEEE Symposium Series on Computational Intelligence SSCI 2018

�����

�����

�����

�����

�	

��

��
��

�
��	
��

��
��
��
��

��
��
�

��
�	
��

��
��
��
��
���
��

�
��	
��
��
��
���
��

��
��
�

��
�	
��
��
��
���
��

�����������	���

��
�
��
	�

��� ���

��!��

��"��

�����

��#��

�	

��

��
��

�
��	
��

��
��
��
��

��
��
�

��
�	
��

��
��
��
��
���
��

�
��	
��
��
��
���
��

��
��
�

��
�	
��
��
��
���
��

�����������	���

��
�
��
	�

!�� ���

��$#�

�����

���#�

�	

��

��
��

�
��	
��

��
��
��
��

��
��
�

��
�	
��

��
��
��
��
���
��

�
��	
��
��
��
���
��

��
��
�

��
�	
��
��
��
���
��

�����������	���

��
�
��
	�

��� ���

��%�������

�����

&	��

Fig. 2: Mean performance and 95% confidence intervals for all agent configurations with 10, 20, and 40 agents using the

integral metric.

the simulation with the proximity configuration suggests that

large populations of agents tend to stay around the outer edges

of the task environment. Their mutually repulsive behavior

prevents many agents from moving about the center, and the

task of covering much of the environment falls to relatively

few agents. Note that the timer feature negated this phe-

nomenon: and timerProximity outperformed basic with 20 and

40 agents. With less frequent sensing and heading alterations,

the agents do not avoid the center of the environment.

With 10 agents, timerSurface was better than surface, but

with 40 agents surface alone was better than timerSurface.

We hypothesize that with few agents, long periods of straight

movement decreased each agent’s redundant movement over

areas that it had already covered, while with a larger popula-

tion such straight movement caused agents to re-cover areas

that had already been covered by others. In the 40 agent case,

more frequent use of the sensor (every timestep in the surface
configuration) might better help agents avoid areas already

covered by others.

The surface configuration decreased performance according

to the R1 metric, as compared to basic, but not for any of

the other ratio completion metrics. This suggests that use

of the surface sensor increased the speed of area coverage

until after 99% of the arena had been covered, but made it

much harder for agents to find any small remaining uncovered

areas. With the basic behavior, agents move in straight lines,

only changing direction after collisions. With the arena nearly

covered, all of the raycasts of the surface feature will usually

intersect no uncovered area, and the agent will select a new

direction randomly from the 16 regularly spaced ray directions

at each timestep. It seems that this behavior is less effective at

covering the last, small uncovered area than the basic behavior.

For the R1 metric, i.e. considering how long it took to

complete the area coverage task, the timer feature hurt per-

formance in isolation, but it’s addition to the surface feature,

with or without the proximity feature, helped performance.

Thus, randomly altering direction at set timesteps was worse

than just going straight, but applying the surface sensors to

determine a new direction at set timesteps was better than

doing so every timestep.

Perhaps our most interesting result is seen in the simple
environment with the R0.99 metric. The timerSurfaceProximity
configuration had better median performance and a tighter

distribution than the basic behavior, even though each feature

in isolation (the timer, surface, and proximity configurations)

had worse median performance than basic. Thus, the features

were detrimental alone, but beneficial together.

Most configurations performed slightly better in walls than

in simple for the R0.5 metric, but the reverse is generally true

for the other metrics. The walls environment is slightly smaller

than simple, even though the barrier in walls makes it, in some

sense, more difficult. Our agents tend to cover half of the

walls environment faster than they cover half of the simple
environment, but after that, the barrier in walls slows down

progress as compared to simple.

Overall, our results suggest a trajectory of improved perfor-

mance with increasing numbers of agents. We would expect

this tendency to continue with even greater numbers of agents,

but with diminishing returns as redundant area coverage also

increases. We also expect the usefulness of the proximity

IEEE Symposium Series on Computational Intelligence SSCI 2018 2015

●

500

1000

1500

ba
sic

tim
er

su
rfa

ce

pr
ox

im
ity

tim
er

_s
ur

fac
e

tim
er

_p
ro

xim
ity

su
rfa

ce
_p

ro
xim

ity

tim
er

_s
ur

fac
e_

pr
ox

im
ity

Embedded Features

R
0.

5

Environment

simple

walls

(a) 50% covered

●

●

●
●
●

●

●

●

●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

0

10000

20000

30000

40000

50000

ba
sic

tim
er

su
rfa

ce

pr
ox

im
ity

tim
er

_s
ur

fac
e

tim
er

_p
ro

xim
ity

su
rfa

ce
_p

ro
xim

ity

tim
er

_s
ur

fac
e_

pr
ox

im
ity

Embedded Features

R
0.

95

Environment

simple

walls

(b) 95% covered

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

20000

40000

60000

80000

ba
sic

tim
er

su
rfa

ce

pr
ox

im
ity

tim
er

_s
ur

fac
e

tim
er

_p
ro

xim
ity

su
rfa

ce
_p

ro
xim

ity

tim
er

_s
ur

fac
e_

pr
ox

im
ity

Embedded Features

R
0.

99

Environment

simple

walls

(c) 99% covered

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

0

25000

50000

75000

100000

ba
sic

tim
er

su
rfa

ce

pr
ox

im
ity

tim
er

_s
ur

fac
e

tim
er

_p
ro

xim
ity

su
rfa

ce
_p

ro
xim

ity

tim
er

_s
ur

fac
e_

pr
ox

im
ity

Embedded Features

R
1

Environment

simple

walls

(d) 100% covered

Fig. 3: Tukey boxplot showing median performance and distributions for each agent configuration using each ratio completion

metric.

2016 IEEE Symposium Series on Computational Intelligence SSCI 2018

feature to continue to diminish as the number of agents

increases.

In previous work [5] we have emphasized the importance of

analyzing results distributions instead of just average perfor-

mance in randomized approaches to the area coverage task. We

suggested that considering result distributions can help robot

designers to specify constraints to the performance distribution

and then rule out configurations with poor performance. As in

those findings, our present results illustrate that the importance

of starting position depends greatly upon the environment: our

performance distributions across multiple starting placements

are much wider in walls than in simple. It is also noteworthy

that the relative performance of agent configurations differs

for the two task environments. Future work should establish

a tunable metric of environment complexity to determine how

such complexity affects performance.

Batalin and Sukhatme [3] proposed two behavior-based

approaches based on the premise that robots must spread out

over the environment to achieve proper coverage. One of their

approaches (called “Molecular”) is similar to our timerProx-
imity configuration. They used visual communication to avoid

crowded areas and a simple memory mechanism, called “time-

out”. Our results confirmed their findings about the usefulness

of avoiding crowded areas as timerProximity outperformed

basic for 20 and 40 agents in the walls environment and for

all numbers of agents in simple.

Given the importance of considering the cost of equipping

agents with different capacities in real-world applications [20],

suboptimal configurations might be preferable to the best-

performing configurations for some tasks. With 10 agents,

for example, timerSurface outperformed surface in both envi-

ronments, but the difference was greater in walls. The added

benefit of the timer feature might outweigh its cost in the walls
environment but not in simple. As another example, for all

numbers of agents, timerSurfaceProximity outperformed timer-
Proximity. Depending on the cost of surface, the inclusion of

that feature might or might not be worthwhile.

We propose that future work employ some simple heuristics

that might help performance in the area coverage task without

greatly increasing agent complexity. For example, a “spiral”

movement pattern could be implemented with a timer mech-

anism with a delay that increases over time. A covered area

sensor could be used to perform an edge-following behavior.

Simple inter-agent communication capacities could be used

to generate formations that coordinate movement and avoid

redundant covering.

Future work should also compare the performance of simple

randomized methods with more complex approaches to the

area coverage problem. For example, Wagner et al. [23]

proposed a bio-inspired algorithm for area cleaning based on

ant behavior. In that work, robots treat the dirt on the floor

as an indirect form of robot-robot communication. Rañó et

al. [14] used the chaotic behavior of a Braitenberg vehicle to

solve the area coverage problem, showing that such behavior

is equivalent to the movement of charge in an electromagnetic

field. Luo et al. [12] proposed a multi-agent on-line approach

where each neural network-controlled robot treats other robots

as moving obstacles. These approaches require more com-

plex agents than those presented in this work. Therefore, it

may be necessary to define a standard metric of cost and

calculate a performance measure for each method that takes

cost-efficiency into consideration. For example, [20] found

that inter-agent communication was beneficial in absolute

terms under specific conditions in a multi-agent territory

exploration task, but that the benefit was only worthwhile

if the cost of communication was low. A simple wait timer
mechanism, comparable in complexity to our timer feature,

provided performance benefits equivalent to communication

and presumably could be implemented at much lower cost.

We chose our set of agent features because they cor-

respond to the real capacities of some simple robots, are

easily implemented in simulation, and are few enough to

allow consideration of all feature combinations. Future work

can expand the set of sensors (e.g. a wall/obstacle sensor)

and capacities (e.g. remembering covered areas) available to

agents.

Our long term goal is to test different approaches to the

area coverage task in the real world. However, the results of

real world behavior are less predictable than in our simulation.

For example, the effector might leave small areas uncovered,

requiring a second covering. In addition, covered areas can

become uncovered after some time. For example, a floor can

become dirty again after a robot cleans it. Our future work

will pursue tasks that are more realistic. Using more complex

environments, new heuristic approaches, and more robot con-

figurations, we can consider questions such as “Can a group

of robots maintain a necessary coverage ratio indefinitely even

as previously explored areas revert to unexplored status?”

and “Do randomized methods sufficiently scale for vast areas

compared to more complex heuristic approaches?”

VI. CONCLUSION

We have systematically compared the performance of sim-

ple agent configurations in a simulated multi-agent on-line

area coverage task. We tested all combinations of 3 agent

features in two distinct environments and for different numbers

of robots. Our features consisted of a simple timer (timer), a

covered area sensor (surface), and an agent proximity sensor

(proximity).

We found that the usefulness of feature configurations

depends upon the task environment, number of agents de-

ployed, and the metric used to quantify performance. The main

conclusions we have drawn from our results are:

• Agents that avoided each other tended to stay around

the outer edges of the task environment, decreasing

performance.

• Long periods of straight movement decreased redundant

coverage with few agents, but increased it with many

agents.

• The surface feature becomes more useful as the number

of agents increases.

IEEE Symposium Series on Computational Intelligence SSCI 2018 2017

• The proximity feature became less useful as the number

of agents increased.

• The surface feature improved area coverage only until

the environment was almost completely covered.

• Randomly altering direction at set timesteps was worse

than just going straight.

• Applying the surface sensors to determine a new direction

at set timesteps was better than doing so every timestep.

• In the simple environment with the R0.99 metric, the

agent features were each detrimental independently, but

beneficial in combination.

Using our integral metric, which incorporates performance

over the entire simulation run, we found that the best con-

figurations for 10 agents were timerSurface and timerSurface-
Proximity. With 20 or 40 agents, the best configuration was

timerSurface.

REFERENCES

[1] Ercan U. Acar, Howie Choset, Yangang Zhang, and Mark Schervish.
Path planning for robotic demining: Robust sensor-based coverage of
unstructured environments and probabilistic methods. The International
Journal of Robotics Research, 22(7-8):441–466, 2003.

[2] Prasad N. Atkar, Aaron Greenfield, David C. Conner, Howie Choset,
and Alfred A. Rizzi. Uniform coverage of automotive surface patches.
The International Journal of Robotics Research, 24(11):883–898, 2005.

[3] Maxim A. Batalin and Gaurav S. Sukhatme. Spreading Out: A Local
Approach to Multi-robot Coverage, pages 373–382. Springer Japan,
Tokyo, 2002.

[4] M Bonani. Raemy x. pugh j. cianci c. klaptocz a. magnenat s. zufferey j.-
c. floreano d. mondada, f. and a. martinoli. the e-puck, a robot designed
for education in engineering. In Proceedings of the 9th Conference on
Autonomous Robot Systems and Competitions, pages 59–65, 2009.

[5] David Buckingham, Giordano B. S. Ferreira, and Matthias Scheutz.
Better than average: analyzing distributions to understand robot behavior
in a multi-agent area coverage scenario. In Proceedings of 14th
European Conference on Artificial Life, 2017.

[6] Heping Chen, Ning Xi, Zhouhua Wei, Yifan Chen, and Jeffrey Dahl.
Robot trajectory integration for painting automotive parts with multiple
patches. In Robotics and Automation, 2003. Proceedings. ICRA’03.
IEEE International Conference on, volume 3, pages 3984–3989. IEEE,
2003.

[7] Howie Choset. Coverage for robotics – a survey of recent results. Annals
of Mathematics and Artificial Intelligence, 31(1):113–126, Oct 2001.

[8] Deepanwita Das, Srabani Mukhopadhyaya, and Debashis Nandi. Tech-
niques in multi-robot area coverage: A comparative survey. In Handbook
of Research on Design, Control, and Modeling of Swarm Robotics, pages
741–765. IGI Global, 2016.

[9] Enric Galceran and Marc Carreras. A survey on coverage path planning
for robotics. Robotics and Autonomous Systems, 61(12):1258 – 1276,
2013.

[10] N. Hazon, F. Mieli, and G. A. Kaminka. Towards robust on-line
multi-robot coverage. In Robotics and Automation, 2006. ICRA 2006.
Proceedings 2006 IEEE International Conference on, pages 1710–1715,
May 2006.

[11] Alireza Janani, Lyuba Alboul, and Jacques Penders. Multi-agent
cooperative area coverage: Case study ploughing (extended abstract).
In Proceedings of the 2016 International Conference on Autonomous
Agents & Multiagent Systems, AAMAS ’16, pages 1397–1398, Rich-
land, SC, 2016. International Foundation for Autonomous Agents and
Multiagent Systems.

[12] Chaomin Luo, Simon X Yang, and Deborah A Stacey. Real-time
path planning with deadlock avoidance of multiple cleaning robots. In
Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE Interna-
tional Conference on, volume 3, pages 4080–4085. IEEE, 2003.

[13] James McLurkin, Andrew J. Lynch, Scott Rixner, Thomas W. Barr,
Alvin Chou, Kathleen Foster, and Siegfried Bilstein. A Low-Cost Multi-
robot System for Research, Teaching, and Outreach, pages 597–609.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[14] Iñaki Rañó and José A Santos. A biologically inspired controller to
solve the coverage problem in robotics. Bioinspiration and Biomimetics,
12(3):035002, 2017.

[15] Timo Oksanen and Arto Visala. Coverage path planning algorithms for
agricultural field machines. Journal of Field Robotics, 26(8):651–668,
2009.

[16] J. Palacin, T. Palleja, I. Valganon, R. Pernia, and J. Roca. Measuring
coverage performances of a floor cleaning mobile robot using a vision
system. In Proceedings of the 2005 IEEE International Conference on
Robotics and Automation, pages 4236–4241, April 2005.

[17] Liam Paull, Mae Seto, John J. Leonard, and Howard Li. Probabilistic co-
operative mobile robot area coverage and its application to autonomous
seabed mapping. The International Journal of Robotics Research,
37(1):21–45, 2018.

[18] José Prado and Lino Marques. Energy Efficient Area Coverage for an
Autonomous Demining Robot, pages 459–471. Springer International
Publishing, Cham, 2014.

[19] Ioannis Rekleitis, Ai Peng New, Edward Samuel Rankin, and Howie
Choset. Efficient boustrophedon multi-robot coverage: an algorithmic
approach. Annals of Mathematics and Artificial Intelligence, 52(2):109–
142, 2009.

[20] Paul Schermerhorn and Matthias Scheutz. Investigating the adaptiveness
of communication in multi-agent behavior coordination. Adaptive
Behavior, 15(4):423–445, 2007.

[21] G. Schmidt and C. Hofner. An advanced planning and navigation
approach for autonomous cleaning robot operations. In Intelligent
Robots and Systems, 1998. Proceedings., 1998 IEEE/RSJ International
Conference on, volume 2, pages 1230–1235 vol.2, Oct 1998.

[22] Howling Moon Software. Chipmunk2d physics. https://www.
chipmunk-physics.net, 2013 (accessed September 9, 2018).

[23] Israel A. Wagner, Yaniv Altshuler, Vladimir Yanovski, and Alfred M.
Bruckstein. Cooperative cleaners: A study in ant robotics. The
International Journal of Robotics Research, 27(1):127–151, 2008.

[24] Israel A. Wagner, Michael Lindenbaum, and Alfred M. Bruckstein. Mac
versus pc: Determinism and randomness as complementary approaches
to robotic exploration of continuous unknown domains. The Interna-
tional Journal of Robotics Research, 19(1):12–31, 2000.

2018 IEEE Symposium Series on Computational Intelligence SSCI 2018

