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Abstract. Human instructors must monitor and react to multiple, simultaneous 

sources of information when training and assessing complex behaviors and ma-

neuvers. The difficulty of this task requires the instructor to make mental infer-

ences and approximations, which may result in less than optimal training out-

comes. We present a novel performance monitoring and evaluation system that 

automatically analyzes and contextualizes flight control and system data streams 

from high-fidelity aircraft simulators to support, validate, and augment an in-

structor’s evaluative judgments during pilot training. We present initial results 

from the CAMBIO system, which leverages machine learning to assess a pilot 

trainee’s performance in executing flight procedures. CAMBIO’s machine learn-

ing approach currently achieves 80% accuracy in performance categorization. 
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1 Introduction 

Flight instructors are responsible for teaching students how to operate complex machin-

ery in high-stress and high-risk environments. These instructors must monitor the stu-

dent’s behavior, mindset, and response to feedback, all while ensuring the safety and 

stability of the aircraft [1, 2]. In military pilot training, all training must also be com-

pleted to a standardized schedule that does not allow for extra instruction for students 

that are struggling or an accelerated curricula for students that excel, resulting in drop-

out of potential pilots and inefficiencies in training time [1]. We identified the need to 

develop an intelligent, adaptive system that can support, accelerate, and augment an 

instructor’s evaluative judgments during pilot training. 

In response to this need, we developed a system called Cognitive Adaptation and 

Management of Behavior via Information Observation (CAMBIO). CAMBIO employs 

methods for extracting data directly from the simulator and performing feature extrac-

tion on over 61 time-series data streams derived from steering and power controls, en-

vironmental factors, aircraft handling and stability, and other system parameters. The 
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features are used to train and test a series of machine learning classifiers (e.g., ridge 

regression and support vector machines) to categorize trainee performance and to place 

that trainee in relation to the population distribution of other trainees. The features are 

also categorized and summarized into a generalized, quantified representation of pilot 

behavior that we developed from literature reviews and ethnographic and exploratory 

data analysis investigations. Our two-pronged approach allows the utilization of ad-

vanced, but opaque, machine learning techniques for accurate categorization, while still 

providing understandable and interpretable results to aid in training.  

2 Flight Training 

Aviation instructors must keep track of dozens of variables as they evaluate their stu-

dents. Accurate monitoring of this high-dimensional complex data space is not feasible 

by human instructors, and therefore their assessments are often subjective, based on 

their overall feeling of the student’s performance. Computers can record these high-

dimensional data streams, and CAMBIO can support instructors by providing objective 

measurements of pilot performance. 

Emergency Procedure (Autorotation). To test our proof-of-concept system, we are 

currently focusing on a specific helicopter emergency procedure: autorotation. Pilots 

must perform the autorotation procedure when either the main rotor or tail rotor expe-

riences a loss-of-drive and the aircraft begins to fall or spin out of control. The autoro-

tation procedure enables the pilot to remain in control of the aircraft, navigate to a safe 

landing zone, and touch down safely. The procedure is divided into four main steps: 

entry, glide, flare, and landing [3]. 

Flight Simulators (Data Sources). Simulators allow both trainees and experienced pi-

lots to practice life-saving procedures in otherwise dangerous conditions, e.g., engine 

failure. Additionally, flight simulators are often fully instrumented providing continu-

ous data streams from flight controls, flight instruments, buttons, switches, audio, and 

the external environment. 

Data Collection and Labeling. In this proof-of-concept study, we collected data from 

participants performing an autorotation emergency procedure in a UH-1 “Huey” heli-

copter simulator, built by Merlin Simulation [4]. While the participants performed the 

maneuvers, a trained instructor provided categorical ratings (good, fair, poor) on each 

of the four major steps of the autorotation (entry, glide, flare, and touchdown). In all, 

we collected 84 iterations of autorotation, from four pilots. Each iteration consists of 

20 continuous variables (cyclic and collective positions, rate of climb, etc.), and 41 

binary variables (switch positions, button presses, etc.), all collected at 60 Hz. 

3 Performance Evaluation 

CAMBIO takes a dual approach to classifying a trainee’s performance. First, we im-

plemented a rule-based assessment (defining rules from training manuals), described in 

Section 3.1. Second, we developed a Machine-Learning-based classification using our 

labeled simulation data, described in Section 3.2. 



3.1 Rule-based Classification 

Metrics for evaluating performance must be valid and have a scale [5]. The validity of 

our rule-based metrics is assured in that they are derived directly from the training man-

uals specific to the aircraft under consideration. The scale depends on the metric in 

question. This first stage of CAMBIO’s assessment determines whether the pilot falls 

within the performance bounds as required by the training manual but provides limited 

additional quantitative feedback. 

Table 1. Rules derived from training manuals for the  

autorotation emergency procedure’s “entry” step. 

Simulation 

Variable 

Description Lower 

Bound 

Upper 

Bound 

Central 

Value 

Airspeed Knots integrated air speed (KIAS) 80 kph 85 kph - 

Altitude Altitude at point of entry 500 ft None - 

Collective Collective all the way down - - 0 

Rotor speed Maintain targeted speed 101% 105% - 

Pedal position Pedals centered - - 50% 

Rate of climb Must not be gaining altitude None 0 ft/sec - 

Pitch Keep aircraft steady - - 0% 

Roll Keep aircraft steady - - 0% 

Side slip Keep aircraft steady - - 0% 

3.2 Machine Learning Classification 

Assuming the pilot performed the procedure within the bounds specified by the training 

manual (Section 3.1, above), we now turn to a more subtle quantification of their per-

formance, that could be used by instructors to provide objective scoring, constructive 

feedback, and trend analysis by comparing with historical performance. CAMBIO con-

tains three modules for this fine-grained assessment: (i) feature extraction, (ii) classifi-

cation, and (iii) explainability, each described below. 

Feature Extraction. The first step in developing a machine learning classifier is engi-

neering the features that the model will use to distinguish between classes. CAMBIO 

uses TSFresh, a Python library for automatically calculating a large number of time 

series characteristics [6]. Using TSFresh, CAMBIO automatically extracts 7,200 total 

features per autorotation iteration (90 features / continuous variable, with 20 continuous 

variables / step, and 4 steps/iteration. Table 2 contains descriptions of selected TSFresh 

features. We use these time series characteristics as the features for our ML models. 

Classification. Due to the large number of features and potential correlations between 

them, it is impossible to know, a priori, which machine learning model will achieve the 

best results. Additionally, it could be that different flight procedures, or steps within the 

procedures, will be better classified by different machine learning models. Therefore, 

we tested a series of models and obtained the results shown in Table 3. For autorota-

tion’s “entry” step, the Linear Support Vector Classifier achieved 80.5% accuracy in 

classifying a pilot’s performance into the good/fair/poor categories. Figure 1 shows the 

confusion matrix for this trained model, showing the ability to easily distinguish be-

tween all three classes. 

 



Table 2. Example subset of TSFresh features with statistically explainable or prominent features, 

descriptions (algorithmic where applicable), and examples (directly referenced in this study) 

Name Description Example Feature 

autocorrelation Given a lag parameter, calculates autocor-

relation of the time series 

“Feature 382” (Fig. 1); 

applied to collective 

position data stream 

cwt_coefficients Given widths and a coefficient parame-

ters, calculates a continuous wavelet 

transform of the time series 

“Feature 1017” (Fig. 

1); applied to rotor 

speed data stream 

ratio_be-

yond_r_sigma 

Given a parameter, r, calculates propor-

tion of time series values greater that r 

standard deviations from the mean time 

series value 

“Feature 858” (Fig. 1); 

applied to altitude data 

stream 

 
Table 3. Model accuracies for classifying pilot autorotation performance 

Model Accuracy 

Gaussian Process Classifier 0.683 

L1 Logistic 0.683 

Ridge Regression 0.756 

L2 Logistic (Multinomial) 0.780 

L2 Logistic (One vs. Rest) 0.780 

Plain Stochastic Gradient Descent 0.780 

Weighted Stochastic Gradient Descent 0.780 

Linear Support Vector Classifier 0.805 

 

ML Explainability Analysis. While the feature ex-

traction and machine learning classification pipeline 

previously described offers the ability to categorize 

novel sets of flight simulation data, it is limited in use-

fulness to instructors in that it can only provide a ho-

listic, even if confident, performance label for a given 

dataset. The aim of the CAMBIO system is not only to 

categorize performance but also to aid instructors in 

understanding the particular reasons performance 

judgments are made, allowing for more informative 

and fine-tuned guidance. 

To enhance interpretability of the machine learning classifiers used, we leveraged 

the Shapley Additive Explanations (SHAP) tool, a Python library equipped to provide 

explanations for a machine learning model’s decision-making. SHAP employs game 

theoretic techniques primarily to analyze the influence of individual features on predic-

tions or classifications made by the analyzed machine learning model [7]. SHAP can 

therefore assess a model’s reasoning for a given prediction based on individual features. 

We used SHAP to analyze each of our model’s predicted performance classes of data 

streams from the autorotation steps of a subset of our simulation datasets. We generated 

SHAP decision plots to determine the influence of each feature on the relative proba-

bilities of the model classifying given simulation datasets as each performance label. 

Fig 1. Confusion matrix for 

the Linear Support Vector 

Classifier with 80.5% overall 

accuracy 



  
Fig. 2. Feature contribution to SVC classifications for autorotation entry steps of iteration 

42 (left) and iteration 61 (right). The horizontal axis represents SHAP values converted to 

probabilities; the vertical axis shows the cumulative influence of the 20 most influential 

features on the classification result. The dashed line indicates the class to which the classi-

fied simulation iteration actually belongs. 

 

Figure 2 shows feature contribution analysis for the performance classification of auto-

rotation entry steps of four simulation iterations. Iterations 42 and 61 are classified into 

their true respective performance classes (good and poor) with moderately high confi-

dence, indicated by SHAP probabilities of over 0.33. (The average probability of clas-

sifying a candidate into one of three classes is 0.33, indicated by the vertical grey line 

visible in the plots; this is treated as a baseline.) The most influential feature in the 

(correct) classification of autorotation entry in iteration 42 describes the data stream 

tracking collective position (“Feature 382”), while that of the classification of iteration 

61 is a description of the data stream tracking aircraft altitude (“Feature 858”). Consid-

ering these examples, some of the most influential features statistically describe data 

streams of particular importance during performance of the autorotation’s entry step—

namely, collective position, helicopter altitude, and speed of the helicopter’s rotor. 

4 Use in Training 

The CAMBIO system is not designed to replace instructors or remove them from the 

decision-making process. Instead, we have designed CAMBIO to support instructors in 

making faster, more confident decisions by augmenting their judgments with quantita-

tive, tangible data and analytics. Our system provides continuous data that provides 

greater detail than current categorical rating paradigms, real-time performance analysis 

that can be used by the instructor provide feedback when necessary, and tracking over 

time to measure the student’s progress. In addition to supporting the instructor in real-

time, we also expect that the exposure of longitudinal high-resolution, high-dimen-

sional information from CAMBIO may start to train the trainers and teach them to be 

more perceptive to nuances in behavior and less subjective in their evaluations.  

User Interface and Data Visualization. Data and features extracted from flight simu-

lators by the CAMBIO system needs to be intuitively and clearly communicated to 



either an instructor or student. We developed two user interfaces to visualize and con-

textualize different relevant flight performance features. The instructor UI dashboard 

provides insight into the student’s performance over all extracted features and over 

time, as well as placing the student in relation to the performance of all collected data. 

This provides the instructor an easy way to understand the student’s current ability 

compared to both their own prior performance and all previous students’ data. The stu-

dent UI is more limited as to not overwhelm the student. This dashboard presents only 

a couple of features at a time by identifying an aspect of training that they are doing 

well on and an aspect that they should focus on improving. Students can use this dash-

board to keep motivated by understanding where they are succeeding and improving 

their self-assessment and self-correction by understanding where they are struggling. 

5 Conclusions 

The CAMBIO system matched the instructor’s labels with over 80% accuracy, even 

with our small sample size. Our results demonstrate that automated feature extraction 

and classification of performance can align with a trained instructor rating, while also 

providing a data-driven record of why and how those ratings were determined. The 

CAMBIO system will allow instructors to identify strengths and weaknesses of their 

trainees quickly and accurately, as well as to quantitatively track their performance in 

a multi-dimensional space over time. We will confirm these methods with a larger data 

collection from participants of varying experience and skill in Fall 2020. Additional 

future work includes automatically identifying patterns of learning over time and 

demonstrating the transferability of the CAMBIO system to other aircraft types. 
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